173k views
10 votes
2x^3-x^2-3x=210
the answer is 5 but I want to know why.

2 Answers

5 votes
You want to know why what?
User Iqbalzas
by
7.9k points
6 votes

Answer:


x=5,(-9+√(255)i )/(4) ,(-9-√(255)i )/(4)

Explanation:

1) Move all terms to one side.


2x^(3) -x^(2) -3x-210=0

2) Factor
2{x}^(3)-{x}^(2)-3x-210 using Polynomial Division.

1 - Factor the following.


2x^(3) -x^(2) -3x-210

2 - First, find all factors of the constant term 210.


1,2,3,4,5,6,7,10,14,15,21,30,35,42,70,105,210

3) Try each factor above using the Remainder Theorem.

Substitute 1 into x. Since the result is not 0, x-1 is not a factor..


2*1^(3) -1^(2) -3*1-210=-212

Substitute -1 into x. Since the result is not 0, x+1 is not a factor..


2(-1)^(3) -(-1)^(2) -3*-1-210=-210

Substitute 2 into x. Since the result is not 0, x-2 is not a factor..


2*2^(3) -2^(2) -3*2-210=-204

Substitute -2 into x. Since the result is not 0, x+2 is not a factor..


2{(-2)}^(3)-{(-2)}^(2)-3* -2-210 = -224

Substitute 3 into x. Since the result is not 0, x-3 is not a factor..


2* {3}^(3)-{3}^(2)-3* 3-210 = -174

Substitute -3 into x. Since the result is not 0, x+3 is not a factor..


2{(-3)}^(3)-{(-3)}^(2)-3* -3-210 = -264

Substitute 5 into x. Since the result is 0, x-5 is a factor..


2* {5}^(3)-{5}^(2)-3* 5-210 =0

------------------------------------------------------------------------------------------


x-5

4) Polynomial Division: Divide
2{x}^(3)-{x}^(2)-3x-210 by
x-5.


2x^(2)
9x
42

-------------------------------------------------------------------------


x-5 |
2x^(3)
-x^(2)
-3x
-210


2x^(3)
-10x^(2)

-----------------------------------------------------------------------


9x^(2)
-3x
-210

--------------------------------------------------------------------------


42x
-210


42x
-210

-------------------------------------------------------------------------

5) Rewrite the expression using the above.


2x^2+9x+42


(2x^2+9x+42)(x-5)=0

3) Solve for
x.


x=5

4) Use the Quadratic Formula.

1 - In general, given
a{x}^(2)+bx+c=0 , there exists two solutions where:


x=\frac{-b+\sqrt{b^(2) -4ac} }{2a} ,(-b-√(b^2-4ac) )/(2a)

2 - In this case,
a=2,b=9 and
c = 42.


x=(-9+√(9^2*-4*2*42) )/(2*2) ,(-9-√(9^2-4*2*42) )/(2*2)

3 - Simplify.


x=(-9+√(255)i )/(4) ,(-9-√(255)i )/(4)

5) Collect all solutions from the previous steps.


x=5,(-9+√(255)i )/(4) ,(-9-√(255)i )/(4)

User LtlBeBoy
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories