Answer:
![x=5/3\text{ or } x=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/btdnqsgof1gvjt1mdl8m1xwticvk9c6mdj.png)
Explanation:
We have the equation:
![27x^6-152x^3+125=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/sqos96bxh9kdhetdwe69474jksu3mrt289.png)
We can solve this using u-substitution. Let's let u=x³. Therefore:
![27(x^3)^2-152(x^3)+125=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/w67knxpequ1a4czbe3pabm6pbb6dwod7vx.png)
Substitute all x³s for u:
![27u^2-152u+125=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/psxka34o0kwow9hpl8st4osmko71ts27kl.png)
This is now in quadratic form. So, we can use the quadratic formula:
![u=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pt7b796wbkm9082ae6ee8rsn3g226u3wba.png)
Our a is 27, b is -152, and c is 125. So:
![u=(-(-152)\pm √((-152)^2-4(27)(125)))/(2(27))](https://img.qammunity.org/2021/formulas/mathematics/high-school/xhm65m2wymyxjj2kskrb3kuxitpseufd20.png)
Simplify:
![u=(152\pm√(9604))/(54)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jlk62t4tsh7u1q9r4kcvoewo8pwn0qmjd2.png)
Simplify:
![u=(152\pm 98)/(54)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cnu82ibsdpk6ge3oycjcu3r9rq8zjnpslm.png)
Reduce. Divide everything by 2:
![u=(76\pm49)/(27)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ixelcjw199mdez6gb1z9zsrlfltjutc395.png)
Split into two cases:
![u=(76+49)/(27)\text{ or } u=(76-49)/(27)](https://img.qammunity.org/2021/formulas/mathematics/high-school/e5mgwh9639ah887zmlbyzsszlvflidlayd.png)
Solve for each case:
![u=(125)/(27)\text{ or } u=(27)/(27)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/yfzwoxbagq8yi8qrddyqza81s0wgc0ku6c.png)
Substitute back x³ for our u:
![x^3=(125)/(27)\text{ or } x^3=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/4w0fxg7u7mzwwmoplvfk43me7nk9e028m7.png)
Take the cube root of each equation:
![x=\sqrt[3]{(125)/(27)}\text{ or } x=\sqrt[3]1](https://img.qammunity.org/2021/formulas/mathematics/high-school/mbqg9jygjnd8vr7kblsr8cxqkn9gf40035.png)
Evaluate:
![x=5/3\text{ or } x=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/btdnqsgof1gvjt1mdl8m1xwticvk9c6mdj.png)
And that's our two solutions.
And we're done!