Answer:
![Area = x^2 + 9x + 14](https://img.qammunity.org/2021/formulas/mathematics/college/4goje9c3e3it0sr2ksj5jg52qu8tk0xyp6.png)
![Perimeter = 4x + 18](https://img.qammunity.org/2021/formulas/mathematics/college/za2q2akpimqg4qwmxtub78o86zonh4gql3.png)
Explanation:
Given:
Length of rectangular garden = (x + 2) ft
Width = (x + 7) ft
Required:
a. Polynomial expression of the area of the garden
b. Polynomial expression of the perimeter of the garden
SOLUTION:
Area of the rectangular garden = length × width
![Area = (x + 2)(x + 7)](https://img.qammunity.org/2021/formulas/mathematics/college/36zvhz0wjq8w1pqfg15sgwdceo2rxog3np.png)
Expand using the distributive property of multiplication
![Area = x(x + 7) +2(x + 7)](https://img.qammunity.org/2021/formulas/mathematics/college/ilicexhgipvt6qtbaokbhlngrw2ig9xalv.png)
![Area = x^2 + 7x + 2x + 14](https://img.qammunity.org/2021/formulas/mathematics/college/upxbylictn6cdpn8fe0rwexh3o6c0hlllg.png)
![Area = x^2 + 9x + 14](https://img.qammunity.org/2021/formulas/mathematics/college/4goje9c3e3it0sr2ksj5jg52qu8tk0xyp6.png)
Perimeter = 2(length) + 2(width)
![Perimeter = 2(x + 2) + 2(x + 7)](https://img.qammunity.org/2021/formulas/mathematics/college/gah8h6f03f1th0jkm9hb7iss7rm57u5okv.png)
![Perimeter = 2x + 4 + 2x + 14](https://img.qammunity.org/2021/formulas/mathematics/college/h9w1gyx0flx51x0wdxutqt7j3pngv7b16n.png)
Collect like terms
![Perimeter = 2x + 2x + 4 + 14](https://img.qammunity.org/2021/formulas/mathematics/college/rzirj0rgmp6kc8rpkqd01f9btgq2eq43hl.png)
![Perimeter = 4x + 18](https://img.qammunity.org/2021/formulas/mathematics/college/za2q2akpimqg4qwmxtub78o86zonh4gql3.png)