Answer:
7.8
Explanation:
distance formula :
![d = √((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rhthe4l8tfivcvt52yb7wl2suettl4zbxs.png)
where the x and y values are derived from the given points
here the given points are (11,3) and (6,9)
assigning variables
(x1,y1) = (11,3) so x1 = 11 and y1 = 3
(x2,y2) = (6,9) so x2 = 6 and y2 = 9
plugging in values into formula
recall formula
![d = √((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rhthe4l8tfivcvt52yb7wl2suettl4zbxs.png)
==> plug in x1 = 11 , y1 = 3 , x2 = 6 and y2 = 9
![d=√((6-11)^2+(9-3)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/abrwnq6xxfm06l6jkb6uncsbodkfingcjh.png)
==> subtract values in parenthesis
![d=√((-5)^2+(6)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/6mm6a8rx68pdp5q34fhc0q92yz7391yzo2.png)
==> evaluate exponents
![d=√(25+36)](https://img.qammunity.org/2023/formulas/mathematics/college/qorm0acuetjdzjq894xd3fuwoavyn6gq0e.png)
==> add 25 and 36
( approximately )