Given:
Endpoints of segment AB are A(- 18, 5) and B(- 4, 5).
Point Z is located exactly 1/8 of the distance from A to B.
To find:
The value of the x-coordinate of point Z.
Solution:
Point Z is located exactly 1/8 of the distance from A to B.
AZ:AB=1:8
AZ:ZB = AZ:(AB-AZ)= 1:(8-1) = 1:7
It means point Z divided segment AB in 1:7.
Using section formula, the x coordinate of point Z is
![x-coordinate=(mx_2+nx_1)/(m+n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8541mwlyuab3f2q0ylzocg5q2azixlu2p2.png)
![x-coordinate=(1(-4)+7(-18))/(1+7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/z99z79rhquh3839xensa1w29rki4pfmiag.png)
![x-coordinate=(-4-126)/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/e4bgb5kes8ithod8bxycoyktnntt84ouz2.png)
![x-coordinate=(-130)/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/m72nqc0ghf3x899gj7e6h9kcrgfwlidt4k.png)
![x-coordinate=-16.25](https://img.qammunity.org/2021/formulas/mathematics/high-school/tg6osmwz19skebm5vgrcc5xpxjvfap1hmy.png)
Therefore, the required x-coordinate of point Z is -16.25.