Answer:
m(∠FBA) = 42°
m(∠FAB) = 23°
m(∠AFB) = 115°
Explanation:
Lines AB and CD are parallel.
m(∠FCD) = m(∠FBA) = 42° [Alternate interior angles]
m(∠CDF) + m(∠CDE) = 180° [Linear pair of angles]
m(∠CDF) = 180° - 157°
= 23°
m(∠CDF) = m(∠BAF) = 23° [Alternate interior angles]
m(∠AFB) + m(∠FBA) + m(∠BAF) = 180° [Sum of interior angles of a triangle]
m(∠AFB) + 42° + 23° = 180°
m(∠AFB) = 180° - 65°
= 115°
Therefore, m(∠FBA) = 42°
m(∠FAB) = 23°
m(∠AFB) = 115°