Answer:
The value is
![v_b = 9.89 \ miles /hour](https://img.qammunity.org/2021/formulas/mathematics/high-school/c33mwkdiqsllsrndwej0up4suummd3awt0.png)
Explanation:
From the question we are told that
The velocity of the wind southward is
![v = 5 j \ miles / hour](https://img.qammunity.org/2021/formulas/mathematics/high-school/v78ij912ef4e0e2mtca21x7okyjgl3mw63.png)
The resultant velocity of the bird with the with wind is
Generally for an object moving in the northwest direction the angle with the horizontal is 45°
Generally the velocity of the bird in the along the x -axis is
![V_x= v_b cos 45^o i](https://img.qammunity.org/2021/formulas/mathematics/high-school/l6wo08955kmjpjseww4qeovsumsztdagfm.png)
Generally the velocity of the bird in the along the y -axis is
![V_y=(v_b sin 45^o - 5)j](https://img.qammunity.org/2021/formulas/mathematics/high-school/iqbt45oput3y1690y0gq52zrq4okvili00.png)
Here
is the velocity of the bird without the wind
Generally the resultant velocity of the bird with the with wind is mathematically represented as
![V = √(V_x^2 + V_y^2 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/cril19e91hqqzlmrw3ppd7wqtlci9jja9n.png)
=>
![√(53) = √((v_b cos 45^o)^2 + (v_b sin 45^o - 5)^2 )](https://img.qammunity.org/2021/formulas/mathematics/high-school/ryouaig6yyfi6i1h8vmpxkeif145uf0xb4.png)
Generally
![sin 45^o = (1)/(√(2) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/temgs65up0p404hip1z8c1yoaokk5eaz4p.png)
and
![cos 45^o = (1)/(√(2) )](https://img.qammunity.org/2021/formulas/mathematics/high-school/dcz2ou30aqfxogs1dngj1m8ite3u9th0pd.png)
So
![√(53) = \sqrt{(v_b* (\frac{1}{√(2) ))^2 + ([v_b * ((1)/(√(2) ) ]- 5)^2 )]()
=>
![53 = (1)/(2) v_b^2 + (1)/(2) v_b^2 + 5^2 -2*5 * (1)/(√(2) ) v_b](https://img.qammunity.org/2021/formulas/mathematics/high-school/bywcuc0vc2xqiyxd8ltlld0zlog4v1cs1u.png)
=>
=>
Solving the above quadratic equation using quadratic formula we obtain that
![v_b = 9.89 \ miles /hour](https://img.qammunity.org/2021/formulas/mathematics/high-school/c33mwkdiqsllsrndwej0up4suummd3awt0.png)
The other value is negative so we do not make use of it because we know that the bird is moving in the positive x and y axis