Answer:
The test statistic Z = 2 < 2.576 at 0.10 level of significance
Null hypothesis is accepted
Explanation:
Step(i):-
Given Population proportion P = 0.49
Q = 1 - P = 1 - 0.49 = 0.51
Given sample proportion
![p^(-) = (x)/(n) = (154)/(281) = 0.548](https://img.qammunity.org/2021/formulas/mathematics/college/qawdjbc2ruun75n4ipo1m3695tbkgab4k4.png)
Level of significance = 0.10
Null hypothesis : H₀ : P = 0.49
Alternative Hypothesis :H₁: P≠ 0.49
Step(ii):-
Test statistic
![Z = \frac{p^(-) -P}{\sqrt{(PQ)/(n) } }](https://img.qammunity.org/2021/formulas/mathematics/college/cebwljxgx7zwrv3d06qszm1mlhn70dqisz.png)
![Z = \frac{0.548-0.49}{\sqrt{(0.49 X 0.51)/(281) } }](https://img.qammunity.org/2021/formulas/mathematics/college/zrn0r8iurrt0wit35hei7vjz2am4hu35zz.png)
Z = 2
The tabulated value = 2.576
The calculated value Z = 2 < 2.576 at 0.10 level of significance
Null hypothesis is accepted