Answer:
12.03%
Explanation:
The z score i used to measure by how many standard deviations the raw score is above or below the mean. It is given by the equation:
![z=(x-\mu)/(\sigma)\\ \\where\ \mu=mean,\sigma=standard \ deviation,x=raw\ score](https://img.qammunity.org/2021/formulas/mathematics/college/wrlezbk36ds0jdxn69niug9m16edugueny.png)
a) For variety A, the mean = μ = 90, standard deviation = σ = 8
For x = 100 grams:
![z=(x-\mu)/(\sigma) =(100-90)/(9) =1.11](https://img.qammunity.org/2021/formulas/mathematics/college/mptnrj0yvdj0rmuti9q2swzkfzfd7xa722.png)
For x = 110 grams:
![z=(x-\mu)/(\sigma) =(110-90)/(9) =2.22](https://img.qammunity.org/2021/formulas/mathematics/college/em0we75srnlqkq35jxs7o2lg9quf829nor.png)
From the normal distribution table, P(100 < X < 110) = P(1.11 < z < 2.22) = P(z < 2.22) - P(z < 1.11) = 0.9868 - 0.8665 = 0.1203 = 12.03%