Answer:
C
Explanation:
We know that the volume of a cylinder is given by the formula:
![V=\pi r^2h](https://img.qammunity.org/2021/formulas/mathematics/college/1l8ozclpk7wnbc3iifytlwq8czg1is3e65.png)
And we want to find the expression that represents the volume when the radius is (x+8) and the height is (2x+3).
So, let's substitute (x+8) for r and (2x+3) for h. This yields:
![V=\pi (x+8)^2(2x+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7sr7vg9rjdcjfyj3nd4bof6z5g6zkqlzyg.png)
Let's expand.
Expand the square term first. We can use the perfect square trinomial pattern, which is:
![(a+b)^2=a^2+2ab+b^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/i78c6m27tvn37rh92mblgc3owe9vkpu7p0.png)
Here, our a is x and b is 8. So:
![V=\pi (x^2+2(x)(8)+(8)^2)(2x+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5tt894hu3edlpb4h8gelta1d7xbdhmyflg.png)
Simplify:
![V=\pi (x^2+16x+64)(2x+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/goqo7wn9ibvmwj0dflzlixizfzo1mtampn.png)
Expand further. This time, we will use the distribute property. So:
![V=\pi ((x^2+16x+64)(2x)+(x^2+16x+64)(3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/aw3hce2698i0mr19sex2vm0l6s1sp5eqqc.png)
Multiply:
![V=\pi((2x^3+32x^2+128x)+(3x^2+48x+192))](https://img.qammunity.org/2021/formulas/mathematics/high-school/7eq6w1x2p604ji3v9o5fz6o0jtwnus9buc.png)
Combine like terms:
![V=\pi((2x^3)+(32x^2+3x^2)+(128x+48x)+(192))](https://img.qammunity.org/2021/formulas/mathematics/high-school/h3whva13trrnuviw7gmexwctissxbri404.png)
Add:
![V=\pi(2x^3+35x^2+176x+192)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uyw9njgzv7lw5p369va080ryfkt8vgwoik.png)
Distribute the π:
![V=2\pi x^3+35\pi x^2+176\pi x+192\pi](https://img.qammunity.org/2021/formulas/mathematics/high-school/k9jixzlu33l5uasv23n6fjecxus9ail8cu.png)
So, our answer is C.
And we're done!