229k views
5 votes
Determine which ordered pair(s) lie on the function f(x)=(1/4)^x. (1,4) (-1,4), (3, 1/64), (0, 1/4)

1 Answer

4 votes

Given:

The function is


f(x)=\left((1)/(4)\right)^x

To find:

The ordered pair(s) from the options lie on the function.

Solution:

We have,


f(x)=\left((1)/(4)\right)^x

For x=1,


f(1)=\left((1)/(4)\right)^1


f(1)=(1)/(4)\\eq 4

So, the point (1,4) does not lies on the function f(x).

For x=-1,


f(-1)=\left((1)/(4)\right)^(-1)


f(-1)=4

So, the point (-1,4) lies on the function f(x).

For x=3,


f(3)=\left((1)/(4)\right)^(3)


f(3)=(1)/(64)

So, the point
\left(3,(1)/(64)\right) lies on the function f(x).

For x=0,


f(0)=\left((1)/(4)\right)^0


f(0)=1

So, the point
\left(0,(1)/(4)\right) does not lies on the function f(x).

Therefore, the correct options are B and C.

User Donaldo
by
4.4k points