Answer:
![\mathbf{N_A = 1.71 * 10^(-6) \ kmol/m^2.s}](https://img.qammunity.org/2021/formulas/chemistry/college/z17nyqqs7rns83gpjmw06xnhokvf6vqqdf.png)
Step-by-step explanation:
From the given information:
The total length = 0.20 m
Diameter = 0.01 m
Temperature = 298 K
Pressure = 101.32 kPa
The partial pressure of CO2 i.e
is 456 mm Hg at one end
To kPa, we have:
=
![456 * (101.325)/(760)](https://img.qammunity.org/2021/formulas/chemistry/college/dddapnuk8h5ijr2vnyf4i0nrzhoyfq07bg.png)
= 60.795 kPa
The partial pressure of CO2 i.e.
at the other end is 76 mm Hg
To kPa; we have
=
![75 * (101.325)/(760)](https://img.qammunity.org/2021/formulas/chemistry/college/e6ebx79bluh9cgr3mzg5q5fj88l9dwuh8t.png)
= 9.999 kPa
10 kPa
The diffusion coefficient of CO
in N
is 1.67 × 10⁻⁵
Universal gas constant = 8.314 J/mol/k
For equimolar counter-diffusion between the CO2 and N2 gases, the molar flux of CO
can be estimated by using the formula:
![N_A = (D_(AB))/(RT)(p_(A1) - p_(A2))](https://img.qammunity.org/2021/formulas/chemistry/college/pqo6fmz24uluespowx729z694qp9s4lk6x.png)
replacing our values from the above parameters then:
![N_A = (1.67 * 10^(-5))/(8.314 * 298 * 0.2)(60.795 - 10)](https://img.qammunity.org/2021/formulas/chemistry/college/jrt722i2ded67o2i8uqupbfbqzyhdjuqfy.png)
![\mathbf{N_A = 1.71 * 10^(-6) \ kmol/m^2.s}](https://img.qammunity.org/2021/formulas/chemistry/college/z17nyqqs7rns83gpjmw06xnhokvf6vqqdf.png)