Answer:
![\angle ABC=116\textdegree](https://img.qammunity.org/2021/formulas/mathematics/college/45ebmjhddpahiu5821a5519hxlgx6darrr.png)
Explanation:
Remember that by the definition of angle bisector, the two resulting angles are equivalent to each other.
So, ∠CBD and ∠ABD are equivalent. In an equation:
![\angle CBD=\angle ABD](https://img.qammunity.org/2021/formulas/mathematics/college/o4xqkbwkxti0ibh66oev49srfa20u110lw.png)
Substitute them for their equations:
![5x+13=9x-23](https://img.qammunity.org/2021/formulas/mathematics/college/6lom6at36fnhiwtfplhw9r8h3ess03eg6g.png)
Solve for x. Add 23 to both sides:
![5x+36=9x](https://img.qammunity.org/2021/formulas/mathematics/college/b0mpaaf3sb5e3lt5qq2ydpzr2riksuzb95.png)
Subtract 5x from both sides:
![36=4x](https://img.qammunity.org/2021/formulas/mathematics/college/w6oa0ywzuq3kozgw54fwbh42d11d6rc8o0.png)
Divide both sides by 4:
![x=9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q77jblsm8n3ck1b6c3jt9z2pfjukh5bxl9.png)
So, the value of x is 9.
Now, to find ∠ABC, note that it is the sum of ∠CBD and ∠ABD. So:
![\angle ABC=\angle CBD+\angle ABD](https://img.qammunity.org/2021/formulas/mathematics/high-school/cmqlff0qdlqcbynw74hgvp51vt6qgpvbgs.png)
Since we know the two angles are equivalent, we can substitute:
![\angle ABC=\angle ABD+\angle ABD](https://img.qammunity.org/2021/formulas/mathematics/college/1uotprbhzqq3b1u00xw45xu0yeh94stikd.png)
We can combine like terms:
![\angle ABC=2\angle ABD](https://img.qammunity.org/2021/formulas/mathematics/college/qz1o9u7k3x4pzk88gthh9x150kjgpxc4ap.png)
Substitute ∠ABD for the equation. This gives us:
![\angle ABC=2(9x-23)](https://img.qammunity.org/2021/formulas/mathematics/college/xj3tp178mhq1a966dp5uv4ytlsvgk0bdge.png)
Substitute 9 for x. So:
![\angle ABC=2(9(9)-23)](https://img.qammunity.org/2021/formulas/mathematics/college/qscafy4xml092qqjvfobqz9yzw4le0wjns.png)
Multiply:
![\angle ABC=2(81-23)](https://img.qammunity.org/2021/formulas/mathematics/college/2r7orbzfn1r2v69srwshcvk8idpl5iei3q.png)
Subtract:
![\angle ABC=2(58)](https://img.qammunity.org/2021/formulas/mathematics/college/y7pq1rkrignzaoovd4s9xg4czhe718qjdq.png)
Multiply:
![\angle ABC=116\textdegree](https://img.qammunity.org/2021/formulas/mathematics/college/45ebmjhddpahiu5821a5519hxlgx6darrr.png)
And we're done!