Answer:
56 days
Step-by-step explanation:
![\sf Half \ Life : A = A_O \ x \ ((1)/(2) )^{(t)/(h) }](https://img.qammunity.org/2023/formulas/mathematics/college/392z27g3pmpqxutlkhcn0it3v68avm9fd2.png)
where A is final amount, Ao is initial amount, t is time taken, h is half life
Here given:
initial amount: 400 millicuries
final amount: 3.125 millicuries
half life: 8 days
time taken: ?
Hence solve for time taken:
![\sf \rightarrow A = A_O \ x \ ((1)/(2) )^{(t)/(h) }](https://img.qammunity.org/2023/formulas/mathematics/college/n69o2usexn86tl2qnqz60iwbrfxzqj585y.png)
insert values given
![\sf \rightarrow 3.125 = 400 \ x \ ((1)/(2) )^{(t)/(8) }](https://img.qammunity.org/2023/formulas/mathematics/college/qeoqcak8csjjg3r9b30df98eqh6ht6alp5.png)
divide both sides by 400
![\sf \rightarrow ((1)/(2))^{(t)/(8)}=0.0078125](https://img.qammunity.org/2023/formulas/mathematics/college/q9xyewienh9o8f06lnp4ppzmelfds3gd1b.png)
apply exponent rule
![\sf \rightarrow {(t)/(8)}=(ln(0.0078125))/(ln(1/2))](https://img.qammunity.org/2023/formulas/mathematics/college/zjfniwsiar7izznuwgm534d99027gbukvl.png)
simplify
![\rightarrow \sf (t)/(8)=7](https://img.qammunity.org/2023/formulas/mathematics/college/woq0mstfqgqw053els1uzvx66jbu48t8ei.png)
multiply both sides by 8
![\rightarrow \sf t = 56](https://img.qammunity.org/2023/formulas/mathematics/college/btskhsn3xvs84fj6fy72md3osk6xwtn1xz.png)