Answer:
The points that are 10 units from P(-17,-2) are (-23,6) and (-11,6)
Explanation:
Distance Between Points in the Plane
Given two points A(x,y) and B(w,z), the distance between them is:
![d=√((z-y)^2+(w-x)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/95vr3jzfkf5u86tadftxej66au6d0x4mc3.png)
It can be also expressed as:
![d^2=(z-y)^2+(w-x)^2](https://img.qammunity.org/2021/formulas/mathematics/college/6swdh6axn9d3jnl1n9i83nlk55yhj4yvz9.png)
Substituting the values of both points, and knowing the distance is 10:
![10^2=(6-(-2))^2+(x+17)^2](https://img.qammunity.org/2021/formulas/mathematics/college/jv2mkd003fycj83p97kjpb4b5wccc6alld.png)
![100=8^2+(x+17)^2](https://img.qammunity.org/2021/formulas/mathematics/college/5j8z2ek47jwohmyos8n69xks3w48cfrl9j.png)
Swapping both sides:
![64+(x+17)^2=100](https://img.qammunity.org/2021/formulas/mathematics/college/r5omquuootgb6eyu50dgrkuk4wkbqmnupb.png)
Moving the constants to the right side:
![(x+17)^2=100-64=36](https://img.qammunity.org/2021/formulas/mathematics/college/ki301g5js4ae7eqz1ymk7flvnvdytl09w2.png)
Taking the square root:
![x+17=\pm 6](https://img.qammunity.org/2021/formulas/mathematics/college/jx8syjhc23hkwsdxs14u69fokhyljmhrt8.png)
We get two possible answers:
![x=-17-6=-23](https://img.qammunity.org/2021/formulas/mathematics/college/dx52qe3axuwaghd12dnuwdagchffur3gxc.png)
![x=-17+6=-11](https://img.qammunity.org/2021/formulas/mathematics/college/xxxn69ggr8u54lvvc8dklk7lnq0m1uss2s.png)
Thus the points that are 10 units from the point P(-17,-2) are (-23,6) and (-11,6)