Answer:
- 1. 324
- 2. -306
- 3. -588
- 4. 246
- 5. 84
Explanation:
Sum of the first n terms of AP
The sum of the first 12 terms of AP
- S₁₂ = 1/2*12*(a₁ + a₁₂) = 6(a₁ + a₁₂)
1. aₙ = 4n + 1
- a₁ = 4 + 1 = 5
- a₁₂ = 4*12 + 1 = 49
- S₁₂= 6(5 + 49) = 324
2. aₙ = 7 - 5n
- a₁ = 7 - 5 = 2
- a₁₂ = 7 - 5*12 = -53
- S₁₂= 6(2 - 53) = -306
3. aₙ = 3 - 8n
- a₁ = 3 - 8 = -5
- a₁₂ = 3 - 8*12 = -93
- S₁₂= 6( -5 -93 ) = -588
4. aₙ = 4n -6
- a₁ = 4 - 6 = -1
- a₁₂ = 4*12 - 6 = 42
- S₁₂= 6(-1 + 42) = 246
5. aₙ = n + 1/2
- a₁ = 1 + 1/2 = 1.5
- a₁₂ = 12 + 1/2 = 12.5
- S₁₂= 6(1.5 + 12.5) = 84