176k views
3 votes
Integral of 17/(x^3-125)

User Hakan Kose
by
8.5k points

1 Answer

5 votes

Answer:

17/75 ln│x − 5│− 17/150 ln(x² + 5x + 25) − 17/(5√75) tan⁻¹((2x + 5) / √75) + C

Explanation:

∫ 17 / (x³ − 125) dx

= 17 ∫ 1 / (x³ − 125) dx

= 17 ∫ 1 / ((x − 5) (x² + 5x + 25)) dx

Use partial fraction decomposition:

= 17 ∫ [ A / (x − 5) + (Bx + C) / (x² + 5x + 25) ] dx

Use common denominator to find the missing coefficients.

A (x² + 5x + 25) + (Bx + C) (x − 5) = 1

Ax² + 5Ax + 25A + Bx² − 5Bx + Cx − 5C = 1

(A + B) x² + (5A − 5B + C) x + 25A − 5C = 1

Match the coefficients and solve the system of equations.

A + B = 0

5A − 5B + C = 0

25A − 5C = 1

A = 1/75

B = -1/75

C = -2/15

So the integral is:

= 17 ∫ [ 1/75 / (x − 5) + (-1/75 x − 2/15) / (x² + 5x + 25) ] dx

Simplify:

= 17/75 ∫ [ 1 / (x − 5) − (x + 10) / (x² + 5x + 25) ] dx

Factor ½ from the numerator of the second fraction:

= 17/75 ∫ [ 1 / (x − 5) − ½ (2x + 20) / (x² + 5x + 25) ] dx

Split the fraction:

= 17/75 ∫ [ 1 / (x − 5) − ½ (2x + 5) / (x² + 5x + 25) − ½ (15) / (x² + 5x + 25) ] dx

Multiply the last fraction by 4/4:

= 17/75 ∫ [ 1 / (x − 5) − ½ (2x + 5) / (x² + 5x + 25) − 30 / (4x² + 20x + 100) ] dx

Complete the square:

= 17/75 ∫ [ 1 / (x − 5) − ½ (2x + 5) / (x² + 5x + 25) − 15 / ((2x + 5)² + 75) ] dx

Split the integral:

= 17/75 ∫ 1 / (x − 5) dx − 17/150 ∫ (2x + 5) / (x² + 5x + 25) dx − 17/5 ∫ 1 / ((2x + 5)² + 75) dx

The first integral is:

∫ 1 / (x − 5) dx = ln│x − 5│

The second integral is:

∫ (2x + 5) / (x² + 5x + 25) dx = ln(x² + 5x + 25)

The third integral is:

∫ 1 / ((2x + 5)² + 75) dx = 1/√75 tan⁻¹((2x + 5) / √75)

Plug in:

= 17/75 ln│x − 5│− 17/150 ln(x² + 5x + 25) − 17/(5√75) tan⁻¹((2x + 5) / √75) + C

User GaRRaPeTa
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories