Answer:
(a) 0.65
(b) 3/7
(c) 6/13
Explanation:
(a) P(C') = 1 - p(5) -p(6) = 1 - 0.15 - 0.2
P(C') = 0.65
__
(b) P(B|C) = P(BC)/P(C) = P(5)/(P(5)+P(6)) = 0.15/(0.15 +0.2)
P(B|C) = 3/7
__
(c) P(B'|C') = P(B'C')/P(C') = (P(1) +P(2))/0.65 = (0.15+0.15)/0.65
P(B'|C') = 6/13