151k views
0 votes
If x+y=12 and xy=15,find the value of (x^2+y^2)

1 Answer

3 votes

Answer:
x^2+y^2=(105\pm 18\sqrt6)/(2)

Explanation:

EQ1: x + y = 12 --> x = 12 - y

EQ2: xy = 15

Substitute x = 12-y into EQ2 to solve for y:

(12 - y)y = 15

12y - y² = 15

0 = y² - 12y + 15

↓ ↓ ↓

a=1 b= -12 c=15


.\ y=(-b\pm √(b^2-4ac))/(2a)\\\\\\.\quad =(-(-12)\pm √((-12)^2-4(1)(15)))/(2(1))\\\\\\.\quad =(12\pm √(144-120))/(2)\\\\\\.\quad =(12\pm √(24))/(2)\\\\\\.\quad =(12\pm 2√(6))/(2)\\\\\\.\quad =6\pm √(6)

Now, let's solve for x:


xy=15\\\\x(6\pm\sqrt6)=15\\\\x=(15)/(6\pm\sqrt6)\\\\\\x=(15)/(6\pm\sqrt6)\bigg((6\pm\sqrt6)/(6\pm\sqrt6)\bigg)=(6\pm \sqrt6)/(2)

Lastly, find x² + y² :


y^2=(6\pm \sqrt6)^2\quad \rightarrow \quad y^2=36\pm 12\sqrt6 +6\quad \rightarrow \quad y^2=42\pm 12\sqrt6


x^2=\bigg((6\pm \sqrt6)/(2)\bigg)^2\quad \rightarrow \quad x^2=(42\pm 12\sqrt6)/(4)\quad \rightarrow \quad x^2=(21\pm 6\sqrt6)/(2)


x^2+y^2=(21\pm 6\sqrt6)/(2)+42\pm 12\sqrt6\\\\\\.\qquad \quad = (21\pm 6\sqrt6)/(2)+(84\pm 24\sqrt6)/(2)\\\\\\. \qquad \quad = (105\pm 18\sqrt6)/(2)

User Kitokid
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories