195k views
3 votes
B) Mrs. Shakya sold a jewellery at a loss of 5%. If she had sold it at Rs 5,200 more,

she would have gained 8%. Find the cost price of the jewellery,​

1 Answer

6 votes

Answer:


\huge{ \fbox{ \sf{Rs \: 40000}}}

Explanation:


\sf{Let \: CP \: ( \: cost \: price) \: be \: x}


\sf{Loss \: \% \: = 5 \% \: }


\sf{Selling \: price = CP \: - \: loss \: \% \: of \: CP}


\mapsto{ \sf x - (5)/(100) * x}


\mapsto{ \sf{x - (x)/(20) }}


\mapsto{ \sf{ (x * 20 - x)/(20) }}


\mapsto{ \sf{ (20x - x)/(20)}}


\mapsto{ \sf{ (19x)/(20)}}

Now, Finding the New selling price


\sf{New \: SP \: ( \: selling \: price)} = (19x)/(20) + 5200


\mapsto{ \sf{ (19x + 5200 * 20)/(20)}}


\mapsto{ \sf{ (19x + 10400)/(20)}}

Finally, finding the Cost price :

We have, Profit % = 8 %


\sf{Cost \: price = Selling \: price \: - \: P\% \: of \: CP}


\mapsto{ \sf{x = (19x + 104000)/(20) - 8\% \: of \: x}}


\mapsto{ \sf{x = (19x + 104000)/(20) - (8x)/(100) }}


\mapsto{ \sf{x = (19x + 104000)/(20) - (2x)/(25) }}


\mapsto{ \sf{x = (5(19x + 104000) - 2x * 4)/(100) }}


\mapsto{ \sf{x = (95x + 520000 - 8x)/(100) }}


\mapsto{ \sf{x = (87x + 520000)/(100)}}


\mapsto{ \sf{100x = 87x + 520000}} \: \: ( \sf{Cross \: multiplication}


\mapsto{ \sf{100x - 87x = 520000}}


\mapsto{ \sf{13x = 520000}}


\mapsto{ \sf{x = (520000)/(13)}}


\mapsto{ \boxed {\sf{x = 40000}}}

Therefore, the cost price of the jewellery is Rs 40000

Hope I helped!

Best regards! :D

~
\sf{TheAnimeGirl}

User Vkantiya
by
9.2k points