![\rule{300}{1}\\\dashrightarrow\large\blue\textsf{\textbf{\underline{Given question:-}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y54whljoiif4w0yzuphid2ai16rmeidspu.png)
Write an equation of the line passing through (6, -9) and has a slope of -3.
![\dashrightarrow\large\blue\textsf{\textbf{\underline{Answer and how to solve:-}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4795701jcdlhw64vjrlc4qnze5p4ie3vyw.png)
First, we need to write the equation in point-slope form:-
![\hookrightarrow\sf{y-y_1=m(x-x_1)}](https://img.qammunity.org/2023/formulas/mathematics/college/su1wzoc3ip7wceitwhyen515ldnlx76kxt.png)
- Replace y₁ with -9, m with 3, and x₁ with 6:-
![\hookrightarrow\sf{y-(-9)=3(x-6)}](https://img.qammunity.org/2023/formulas/mathematics/college/yz0491962hfgvcy8khysq4n4lzkpk5qxaz.png)
On simplification,
![\hookrightarrow\sf{y+9=3(x-6)}](https://img.qammunity.org/2023/formulas/mathematics/college/ci8kruwlxlusxf7b37almnuasibuwjt909.png)
On further simplification,
![\hookrightarrow\sf{y+9=3x-18}](https://img.qammunity.org/2023/formulas/mathematics/college/ot4e0t4rpez6x3b7av4b3kket48k8mhkra.png)
Subtract 9 from both sides, which results in:-
![\hookrightarrow\sf{y=3x-27}](https://img.qammunity.org/2023/formulas/mathematics/college/yo44qld9m83c43optknm5ejpwhhiw52pmd.png)
So we conclude that Option B is correct.
Good luck with your studies.
![\rule{300}{1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2w6ves65xgxja0frpmrqcic9efxxwpb93y.png)