103k views
1 vote
Hello, help me please)

Hello, help me please)-example-1
User Babs
by
7.5k points

1 Answer

13 votes

Answer:

Given equation:


10^(5x-2)=2^(8x-3)

Take natural logs of both sides:


\implies \ln 10^(5x-2)= \ln 2^(8x-3)


\textsf{Apply log Power law}: \quad \ln_ax^n=n\ln_ax


\implies (5x-2)\ln 10=(8x-3) \ln 2

Expand brackets:


\implies 5x\ln 10 - 2\ln 10=8x \ln 2 -3 \ln 2

Collect like terms:


\implies 5x\ln 10 - 8x \ln 2 =2\ln 10-3 \ln 2

Factor left sides:


\implies x(5\ln 10 - 8 \ln 2) =2\ln 10-3 \ln 2


\textsf{Apply log Power law}: \quad \ln_ax^n=n\ln_ax


\implies x(\ln 10^5 - \ln 2^8) =\ln 10^2- \ln 2^3


\textsf{Apply log Quotient law}: \quad \ln_a(x)/(y)=\ln_ax - \ln_ay


\implies x\left(\ln\left((10^5)/(2^8)\right)\right) =\ln\left((10^2)/(2^3)\right)

Simplify:


\implies x\left(\ln\left((3125)/(8)\right)\right) =\ln\left((25)/(2)\right)


\implies x=(\ln\left((25)/(2)\right))/(\ln\left((3125)/(8)\right))


\implies x=0.4232297737...

User William Linton
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories