29.3k views
3 votes
X^2+43xy+590y^2 resolve into factors​

User PRIHLOP
by
5.2k points

1 Answer

4 votes

Explanation:

We have:

x - y = 43 , xy = 15

To find, the value of x^2+y^2x

2

+y

2

= ?

∴ x - y = 43

Squaring both sides, we get

(x - y)^2(x−y)

2

= 43^243

2

⇒ x^2+y^2x

2

+y

2

- 2xy = 1849

Using the algebraic identity,

(a - b)^2(a−b)

2

= a^2+b^2a

2

+b

2

- 2ab

⇒ x^2+y^2x

2

+y

2

= 1849 + 2xy

Put xy = 15, we get

x^2+y^2x

2

+y

2

= 1849 + 2(15)

⇒ x^2+y^2x

2

+y

2

= 1849 + 30

⇒ x^2+y^2x

2

+y

2

= 1879

∴ x^2+y^2x

2

+y

2

= 1879

I will send hint follow this hint then slove it .

thankyou

User Sandreen
by
4.8k points