78.3k views
0 votes
What do you observe about the distances between the three pairs of corresponding vertices for each movement Based on your observations, how would you define a translation? How can you extend what you know about the vertices of a shape to all the points on a shape during a translation? ​

User RoseGod
by
4.6k points

2 Answers

2 votes

Answer:

Each distance between the three pairs of corresponding vertices is the same. Based on this observation, a translation is a transformation in a coordinate plane that moves the vertices of a shape a fixed distance. In fact, a translation moves all points on a shape a fixed distance.

Explanation:

User Michael Shopsin
by
5.2k points
0 votes

Answer:

The Observation made about the distances between three pairs of corresponding vertices is that the distance between each translated pair must be equal to the distance between every translated pair . i.e distance between A and A' = distance between B and B' = distance between C and C'

Explanation:

The Observation made about the distances between three pairs of corresponding vertices is that the distance between each translated pair must be equal to the distance between every translated pair . i.e distance between A and A' = distance between B and B' = distance between C and C'

from this observation Translation is the movement of all vertices of shapes at a fixed distance along a given co-ordinate, The movement of the vertices of a shape at a fixed distance is just another way of defining the movement of the points of a shape at a fixed distance in relation to translation

User Vedavyas Bhat
by
5.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.