Given:
Coordinates of point C are (-3,6).
Point B(0,5.5) is the midpoint of AC.
To find:
The coordinates of A.
Solution:
Let the coordinates of point A are (a,b).
Formula for midpoint:
![Midpoint=\left((x_1+x_2)/(2),(y_1+y_2)/(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9i62lu6gc1rfz8v6t1e82036ae3i5e95gc.png)
Using the above formula, the midpoint of A(a,b) and C(-3,6) is
![B=\left((a+(-3))/(2),(b+6)/(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/54lquj13o7fytuyv2znc0wekje2kbj2zqs.png)
![(0,5.5)=\left((a-3)/(2),(b+6)/(2)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/98qhay4tux42r2jlt0d6e363sb8m0iwtpb.png)
On comparing both sides, we get
![(a-3)/(2)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/nxilj34yl3eab1scitn63lj94d7u6gpi50.png)
![a-3=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/slh61x0g5fqwefx286egvcevq07akdmuqk.png)
![a=3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7theyju5xiuykuqovlvwl2kcbogphv2y63.png)
and,
![(b+6)/(2)=5.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/qycjvsajsms6j2n3nnpejnzkipx3mesxvb.png)
![b+6=11](https://img.qammunity.org/2021/formulas/mathematics/high-school/79qvhacasqhelu2f7k3gkvifuxl7yxbc6c.png)
![b=11-6](https://img.qammunity.org/2021/formulas/mathematics/high-school/akfi24092l42yh1nlyl27ezl9qjmkgob6x.png)
![b=5](https://img.qammunity.org/2021/formulas/mathematics/college/lt3yh3qerkxtroo7d4jbqt68m2rnsy3tjh.png)
Therefore, the coordinates of point A are (3,5).