Answer:
m<EFG =
, and m<GFH =
![111^(o)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q2k7dnujj3hzo8pyas0pz4c223k4m5pegs.png)
Explanation:
Linear pair angles are two supplementary angles.
Thus,
m<EFG + m<GFH =
![180^(o)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a5nmxwbaa12c0zlaspgicm36b1es2kj8kl.png)
2n + 21 + 4n + 15 =
![180^(o)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a5nmxwbaa12c0zlaspgicm36b1es2kj8kl.png)
collecting like terms, we have:
6n + 36 =
![180^(o)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a5nmxwbaa12c0zlaspgicm36b1es2kj8kl.png)
6n =
- 36
6n =
![144^(o)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2htapysr82xn6bge8ybi5e6wbnouir5bx6.png)
divide both both sides by 6,
n =
![24^(o)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wm6ccenzcpk2hndk5qi9ife49ak75eo28m.png)
Therefore,
m<EFG = 2n + 21
= 2 x
+ 21
= 48 + 21
=
![69^(o)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hgh17jog8xft60pp507z5gc3fme0qc56mt.png)
m<GFH = 4n + 15
= 4 x
+ 15
= 96 + 15
=
![111^(o)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q2k7dnujj3hzo8pyas0pz4c223k4m5pegs.png)
Thus m<EFG =
, and m<GFH =
![111^(o)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q2k7dnujj3hzo8pyas0pz4c223k4m5pegs.png)