Answer:
![\displaystyle (dy)/(dx)\Big|_((1, 1))=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/qgdncxfhb7wx4y1cgta8d8l575zp5z3tqd.png)
Explanation:
We are given the equation:
![(x^2+y^2)^2=4x^2y](https://img.qammunity.org/2021/formulas/mathematics/high-school/1ox01g3b2dllola7dgzu7dw1v54511plts.png)
And we want to find the slope of the tangent line at the point (1,1).
Recall that the slope of the tangent line to a point of a function is given by the function's derivative.
Thus, find the derivative of the equation. Take the derivative of both sides with respect to x:
![\displaystyle (d)/(dx)\left[(x^2+y^2)^2\right]=(d)/(dx)\left[4x^2y\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/juv6xvzadlqil9djxeh56t3yhoj0s1acro.png)
Let's do each side individually.
Left:
We can use the chain rule:
![(u(v(x))'=u'(v(x))\cdot v'(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yvexz02l1in1l7cxhwii7va1822dwrrcyv.png)
Let v(x) be x² + y² and u(x) is x². Thus, u'(x) is 2x. Therefore:
![\displaystyle (d)/(dx)\left[(x^2+y^2)^2\right]=2\left(x^2+y^2\right)\left((d)/(dx)\left[x^2+y^2\right]\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/iulgg5ejrc344zu6xb84qgp5h6vpjuw8q8.png)
Differentiate:
![\displaystyle (d)/(dx)[(x^2+y^2)^2]=2(x^2+y^2)\left(2x+2y(dy)/(dx)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qqnvvt7vp9omq6spfk7fus4kavorkywvmj.png)
Factor. Therefore, our left side is:
![\displaystyle 4(x^2+y^2)\left(x+y(dy)/(dx)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vfi24yapdex51gis90fmrm39j90yezs1mg.png)
Right:
We have:
![\displaystyle (d)/(dx)\left[4x^2y\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/g0oqcp4gq5wkdzqffnf5xq7su12x4wjmwx.png)
We can move the constant multiple outside:
![\displaystyle =4(d)/(dx)\left[x^2y\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/z5alhd489bcyncs8vkfmclrt2esmgn5v7r.png)
We will use the Product Rule:
![\displaystyle =4\left((d)/(dx)\left[x^2\right]y+x^2(d)/(dx)\left[y\right]\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ctx0i600279en5xby7h04x7bd7g7jb75k4.png)
Differentiate:
![\displaystyle =4\left(2xy+x^2(dy)/(dx)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gr3so9erv55jadquqygskvq0tykwzdt5t3.png)
Therefore, our entire equation is:
![\displaystyle 4(x^2+y^2)\left(x+y(dy)/(dx)\right)=4\left(2xy+x^2(dy)/(dx)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/frmaog9xh2nls0zb1ruj18zpqliitvhtsl.png)
To find the derivative at (1,1), substitute and evaluate dy/dx when x = 1 and y = 1. Hence:
![\displaystyle 4((1)^2+(1)^2)\left((1)+(1)(dy)/(dx)\right)=4\left(2(1)(1)+(1)^2(dy)/(dx)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nrin3c2lpk15rjk432ryo7num95dl8zqvb.png)
Evaluate:
![\displaystyle 4((1)+(1))\left(1+(dy)/(dx)\right)=4\left(2+(dy)/(dx)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tegu6i1p5ccbfwsdu4p51e632t3yfhqrub.png)
Further simplify:
![\displaystyle 8\left(1+(dy)/(dx)\right)=8+4(dy)/(dx)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lybj44lxpuk8xrew9bjgv0tle0248a8rx9.png)
Distribute:
![\displaystyle 8+8(dy)/(dx)=8+4(dy)/(dx)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4simu1jwgwzsx0gk5liuh5xvenpaso585t.png)
Solve for dy/dx:
![\displaystyle 4(dy)/(dx)=0\Rightarrow (dy)/(dx)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/n8ut90nxpnrrmu2l1m53funyf3i4m54owh.png)
Therefore, the slope of the tangent line at the point (1, 1) is 0.