Answer:
![k=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2jmv66p0kvb7uv08qhw8ip6ux1ak1gw4xo.png)
Explanation:
So we have the equation:
![√(2k^2+17)-x=0](https://img.qammunity.org/2021/formulas/mathematics/college/g8gbji9707wfufubea3s3nn80fruz8548h.png)
Where:
![k>0\text{ and } x=7](https://img.qammunity.org/2021/formulas/mathematics/college/zxlxmhuvv24psnjhti3hczonhdo9iyay9p.png)
And we want to find k.
Firstly, let's substitute 7 for x. So:
![√(2k^2+17)-7=0](https://img.qammunity.org/2021/formulas/mathematics/college/yc38kp4q9bs2icfjbxl8ilzw8ba4aflriw.png)
Now, we can solve for k. Add 7 to both sides:
![√(2k^2+17)=7](https://img.qammunity.org/2021/formulas/mathematics/college/owi1lk25hqr4dbfui7jp2mwvt6228d5v24.png)
Square both sides:
![2k^2+17=49](https://img.qammunity.org/2021/formulas/mathematics/college/ixjbukfd4cui1bj58bpglucbp0q2ni198g.png)
Subtract 17 from both sides:
![2k^2=32](https://img.qammunity.org/2021/formulas/mathematics/college/8ihn44gxlzqek8tm5ykt26nxlh19wpzf8b.png)
Divide both sides by 2:
![k^2=16](https://img.qammunity.org/2021/formulas/mathematics/college/byth634s0asjckkgpxvrh5sl6ifu1h1n6o.png)
Take the square root of both sides:
![k=\pm√(16)](https://img.qammunity.org/2021/formulas/mathematics/college/tkobe799w9lzgxduul7axixvo173e4ej9t.png)
Evaluate:
![k=\pm 4](https://img.qammunity.org/2021/formulas/mathematics/college/uk9ldkxc6hc3hwqow0cjdx4f8i0yyw38ry.png)
Remember that we are told k>0. In other words, k must be positive. So, we can ignore the negative answer, giving us:
![k=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2jmv66p0kvb7uv08qhw8ip6ux1ak1gw4xo.png)
So, the value of k is 4.
And we're done!