Answer:
Explanation:
Given equation:
On comparing the equation by ax² + bx + x = 0, We get: a = 1, b = 2 and c = 3
To Find the nature of the roots of the equation firstly we need to find the discriminant of the equation. The expression b²- 4ac is called the discriminant.
![~](https://img.qammunity.org/2023/formulas/mathematics/college/m2m05so3t055ylm8k1gqk34os4t1yic3q5.png)
- Two Distinct real roots, if b² - 4ac > 0
- Two equal real roots, if b² - 4ac = 0
- No real roots, if b² - 4ac < 0
![\\ \: \: \dashrightarrow \: \: \: \sf {b}^(2) - 4ac = 0 \\ \\ \\\: \: \dashrightarrow \: \: \: \sf (2)² - 4 * 1 * 3 = 0 \\ \\ \\ \: \: \dashrightarrow \: \: \: \sf 4 - 4 * 1 * 3 = 0 \\ \\ \\ \: \: \dashrightarrow \: \: \: \sf 4 - 12 = 0 \\ \\ \\ \: \: \dashrightarrow \: \: \: \sf {\underline{\boxed{\sf{\purple{ -8 > 0}}}}} \\ \\](https://img.qammunity.org/2023/formulas/mathematics/college/1skfdgzj9jy31z6nuu4nzmec6yjsrizl93.png)
The discriminant is smaller than 0.
- Hence, Equation has no real roots (no solution)