Answer:
£3263.98 (nearest penny)
Step-by-step explanation:
Compound interest formula
![\sf A=P(1+(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/lizbyzdelibe4abihx5taz0smp3tsvhm1v.png)
where:
- A = final amount
- P = principal
- r = interest rate (in decimal form)
- n = number of times interest applied per time period
- t = number of time periods elapsed
Given:
- P = £2900
- r = 3% = 0.03
- n = 1
- t = 4
Substituting given values into the formula and solving for A:
![\implies \sf A=2900(1+(0.03)/(1))^(1 * 4)](https://img.qammunity.org/2023/formulas/mathematics/college/duupbwkyluea8yorcdw4gwadvegjreegky.png)
![\implies \sf A=2900(1.03)^(4)](https://img.qammunity.org/2023/formulas/mathematics/college/9now1xqmwc1rcm9piou6mxab0k1ulz7cox.png)
![\implies \sf A=3263.975549](https://img.qammunity.org/2023/formulas/mathematics/college/am86c15u1pcn4iaebxrpx9vezqsu9x8xou.png)
Therefore, Colin will have £3263.98 after 4 years (to the nearest penny).