Answer:
C. (3x)^2 - (2)^2
Explanation:
Each of the two terms is a perfect square, so the factorization is that of the difference of squares. Rewriting the expression to ...
(3x)^2 - (2)^2
highlights the squares being differenced.
__
We know the factoring of the difference of squares is ...
a^2 -b^2 = (a -b)(a +b)
so the above-suggested rewrite is useful for identifying 'a' and 'b'.