Answer:
Explanation:
Given that the differential equation is:
![5 (dy)/(dx)+ 45 y = 9\\](https://img.qammunity.org/2021/formulas/mathematics/college/sjhqyp6wdif70mcihntju8nz3ud288bq0d.png)
by dividing both sides by 5; we have:
![(dy)/(dx)+ 9y = (9)/(5) --- (1)](https://img.qammunity.org/2021/formulas/mathematics/college/aqbiwtdt8x3cilexb0ifin0cy9rzbi9tdi.png)
which is a form of a linear equation.
The integrating factor is:
![\mu = e^(\int)^(9dx )](https://img.qammunity.org/2021/formulas/mathematics/college/28rvr21i8ckadrss0a9l03yxlu0prg0u9d.png)
![\mu = e^(9x )](https://img.qammunity.org/2021/formulas/mathematics/college/j3n97vj60r2qq759z1iti4az1albzjbu05.png)
multiplying eqution (1) with
![\mu = e^(9x )](https://img.qammunity.org/2021/formulas/mathematics/college/j3n97vj60r2qq759z1iti4az1albzjbu05.png)
![e^(9x)((dy)/(dx)+ 9y)= ((9)/(5))e^(9x)](https://img.qammunity.org/2021/formulas/mathematics/college/rw7jcs5b8ej2gallx1rfalt7o8m2wfnz60.png)
![(d)/(dx)(ye^(9x))= ((9)/(5))e^(9x)](https://img.qammunity.org/2021/formulas/mathematics/college/juvyh65icw2idrbp7j29mu2k12otd8sa3s.png)
Using integration on both sides.
![\int (d)/(dx)(ye^(9x)) dx= \int (9)/(5) e^(9x) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/2cnlf4y4l5ukgwwnroauw40bno0d27ioj3.png)
![ye^(9x)=(9)/(5) (e^(9x))/(9)+C](https://img.qammunity.org/2021/formulas/mathematics/college/dn1ue1x5416kg2qpn29vxz1fe1i6r0q39h.png)
![ye^(9x)= (e^(9x))/(5)+C](https://img.qammunity.org/2021/formulas/mathematics/college/du8w6uko9mje7whcnk5xft4bwcrn64kcus.png)
![y= (1)/(5)+Ce^(-9x)](https://img.qammunity.org/2021/formulas/mathematics/college/lyyw3tv4wqcmavjci32r3303kc8klncu06.png)
Thus, the general solution is :
![y= (1)/(5)+Ce^(-9x) ; -\infty < x < \infty](https://img.qammunity.org/2021/formulas/mathematics/college/e4ocdwbkbygvyvf5dicrpj90aqdyjpig3j.png)
In general solution:
![y_c = ce^(-9x) \ and \ y_p = (1)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/ur05oo8r8podnoij9im1zpolqyrj0pxmb0.png)
To talk of larger values of x, the value of
is said to be negligible.
This implies that:
![y_c \to 0 \ as \ x \to \infty](https://img.qammunity.org/2021/formulas/mathematics/college/b8x2a4ilhfesynf4s7j8vlfmnsiktdk9r0.png)
Thus,
signifies a transient term in the general solution.