64.5k views
2 votes
Find the trigonometric integral. (Use C for the constant of integration.)

Find the trigonometric integral. (Use C for the constant of integration.)-example-1

1 Answer

3 votes

Suppose we let
u=\sin\theta+\cos\theta, so that
\mathrm du=(\cos\theta-\sin\theta)\,\mathrm d\theta.

Also, recall the double angle identity for cosine:


\cos(2\theta)=\cos^2\theta-\sin^2\theta=(\cos\theta-\sin\theta)(\cos\theta+\sin\theta)

So, we can rewrite and compute the integral using the substitution, as


\displaystyle\int\cos(2\theta)(\sin\theta+\cos\theta)^3\,\mathrm d\theta


=\displaystyle\int u\cdot u^3\,\mathrm du


=\displaystyle\int u^4\,\mathrm du


=\frac{u^5}5+C


=\boxed{\frac{(\cos\theta+\sin\theta)^5}5+C}

User Martin Redmond
by
4.1k points