Answer:
The arc-length is about 1.1953.
Explanation:
We are given the equation:
![y=3-x^2](https://img.qammunity.org/2021/formulas/mathematics/college/zcgaki9f0msbajk22dm3rcn0lbjcovbnv6.png)
And we want to find the length of its arc from:
![0\leq x\leq \sqrt3/2](https://img.qammunity.org/2021/formulas/mathematics/college/1v7ta46w1vk9olb5o7iul3nsgn12sv79xt.png)
Recall that arc-length is given by the formula:
![\displaystyle S = \int_a^b \sqrt{1+ \left((dy)/(dx)\right)^2}\, dx](https://img.qammunity.org/2021/formulas/mathematics/college/m1d4jkpridkok8noxrng92v9abpvdi2ktn.png)
By differentiating and substituting into the arc-length formula, we will acquire:
![\displaystyle S=\int\limits^(√(3)/2)_0 {√(1+4x^2) \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/qkoghot3ksorlq9c3mqt95996x8t3jw16a.png)
To evaluate, we can use trigonometric substitution. Note that:
![\displaystyle S=\int\limits^\sqrt3/2}_0 {√((1)^2+(2x)^2) \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/mv5jrs1iuxdbvflcff0q9j8ewzhv15xidj.png)
Since this is in the form a² + u², we will make the substitution u = atan(θ).
In this case, a = 1 and u = 2x. Thus:
![\displaystyle 2x = \tan \theta](https://img.qammunity.org/2021/formulas/mathematics/college/rqc49iqpjadmk1glvsa7zq1rijlmu8rnqu.png)
Differentiating both sides with respect to x:
![\displaystyle 2\, dx = \sec^2 \theta \, d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/3smhc4gaf7siwidc3bmgjx6e4w9tjvnv0u.png)
So:
![\displaystyle dx = (1)/(2)\sec^2 \theta \, d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/ka539tt5ldpq8tva07t45573xedbd5pihq.png)
Additionally, we must rewrite our bounds. Hence:
![\displaystyle 2(0) = \tan \theta \Rightarrow \theta = 0](https://img.qammunity.org/2021/formulas/mathematics/college/uis8k5tpqe6wmn3jlxy5nxaksi47y8rur0.png)
And:
![\displaystyle 2\left((√(3))/(2)\right) = \tan\theta \Rightarrow \theta = (\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/rlrls7p1alw78b1zysdy6k9g925hund7ly.png)
Thus:
![\displaystyle S = \int_(0)^(\pi /3)√(1+(\tan\theta)^2)\cdot (1)/(2)\sec^2\theta\, d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/lmg28lucyuwcmt78hcy6znfz188aqzg3j2.png)
Simplify:
![\displaystyle S = (1)/(2)\int_(0)^(\pi /3)√(1+\tan^2\theta) \cdot \sec^2\theta d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/45sigslsaicxfc62jp0ynl2d0w7eam2brt.png)
Using trigonometric identities:
![\displaystyle S = (1)/(2)\int_(0)^(\pi /3)√((\sec^2\theta)) \cdot \sec^2\theta d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/uqwybeothqa1pmc88t5tb8jtg4sztor5ok.png)
Simplify:
![\displaystyle S = (1)/(2)\int_(0)^(\pi /3) \sec^3\theta \, d\theta](https://img.qammunity.org/2021/formulas/mathematics/college/a8b99cqn5uoeb4rzbyi5hdqphjn24kgsz0.png)
We can apply the reduction formula:
![\displaystyle \int \sec^nu \, du = (\sec^(n-2)u\tan u)/(n-1)+(n-2)/(n-1)\int \sec^(n-2) u \, du](https://img.qammunity.org/2021/formulas/mathematics/college/b308811anevktryjzsn1jsmbi26c0pm3sv.png)
Hence:
![\displaystyle S = (1)/(2)\left((\sec \theta \tan\theta)/(2)\Big|_(0)^(\pi /3) + (1)/(2) \int_0^(\pi /3) \sec \theta\, d\theta\right)](https://img.qammunity.org/2021/formulas/mathematics/college/ymd5wlfcz96v3kpzk8tw7bgxy53y3zqvqx.png)
This is a common integral:
![\displaystyle S = (1)/(2)\left((\sec \theta \tan\theta)/(2)+ (1)/(2) \left(\ln \left(\sec \theta + \tan\theta\right)\right)\Bigg|_(0)^(\pi /3) \right)](https://img.qammunity.org/2021/formulas/mathematics/college/48dvwm5dehy9crqlvhxarsz9pripxfrhpj.png)
Evaluate. Hence:
![\displaystyle \begin{aligned} S = (1)/(2)\left[\left((\sec(\pi)/(3)\tan(\pi)/(3))/(2)+(1)/(2)\ln\left(\sec(\pi)/(3)+\tan(\pi)/(3)\right)\right) \\ - \left((\sec0\tan0)/(2)+(1)/(2)\ln\left(\sec 0 +\tan 0\right)\right)\right] \end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/u46ebt60467drugzhurb8jyod8n4fqs9jz.png)
Evaluate:
![\displaystyle \begin{aligned} S &=(1)/(2) \left[ \left(((2)\left(√(3)\right))/(2) + (1)/(2)\ln \left(2 + √(3)\right) \right)-\left(((1)(0))/(2) + (1)/(2)\ln \left(1+0\right) \right) \right] \\ \\&= (1)/(2)\left(√(3) + (1)/(2) \ln \left(2+√(3)\right)\right) \\ \\ &\approx 1.1953 \end{aligned}](https://img.qammunity.org/2021/formulas/mathematics/college/bh1zu9c7398nls3eyy7hgsbrwp39fed6qd.png)
Thus, the length of the arc is about 1.1953 units.