52.4k views
2 votes
Trouble finding arclength calc 2

y=3-x^2, 0<=x<=
√(3)/2

i determine that the derivative of the y function is -2x and using the arc length formula i get: (a = √3)/2, b=0)

\int\limits^a_b {√(1+4x^2) } \, dx
now this is where I get stuck, are we suppose to use u sub somehow? If so, I get u=1+4x^2 and du=4x dx but how to I implement du when it has 4x? please show steps on how to do this

1 Answer

3 votes

Answer:

The arc-length is about 1.1953.

Explanation:

We are given the equation:


y=3-x^2

And we want to find the length of its arc from:


0\leq x\leq \sqrt3/2

Recall that arc-length is given by the formula:


\displaystyle S = \int_a^b \sqrt{1+ \left((dy)/(dx)\right)^2}\, dx

By differentiating and substituting into the arc-length formula, we will acquire:


\displaystyle S=\int\limits^(√(3)/2)_0 {√(1+4x^2) \, dx

To evaluate, we can use trigonometric substitution. Note that:


\displaystyle S=\int\limits^\sqrt3/2}_0 {√((1)^2+(2x)^2) \, dx

Since this is in the form a² + u², we will make the substitution u = atan(θ).

In this case, a = 1 and u = 2x. Thus:


\displaystyle 2x = \tan \theta

Differentiating both sides with respect to x:


\displaystyle 2\, dx = \sec^2 \theta \, d\theta

So:


\displaystyle dx = (1)/(2)\sec^2 \theta \, d\theta

Additionally, we must rewrite our bounds. Hence:


\displaystyle 2(0) = \tan \theta \Rightarrow \theta = 0

And:


\displaystyle 2\left((√(3))/(2)\right) = \tan\theta \Rightarrow \theta = (\pi)/(3)

Thus:


\displaystyle S = \int_(0)^(\pi /3)√(1+(\tan\theta)^2)\cdot (1)/(2)\sec^2\theta\, d\theta

Simplify:


\displaystyle S = (1)/(2)\int_(0)^(\pi /3)√(1+\tan^2\theta) \cdot \sec^2\theta d\theta

Using trigonometric identities:


\displaystyle S = (1)/(2)\int_(0)^(\pi /3)√((\sec^2\theta)) \cdot \sec^2\theta d\theta

Simplify:


\displaystyle S = (1)/(2)\int_(0)^(\pi /3) \sec^3\theta \, d\theta

We can apply the reduction formula:


\displaystyle \int \sec^nu \, du = (\sec^(n-2)u\tan u)/(n-1)+(n-2)/(n-1)\int \sec^(n-2) u \, du

Hence:


\displaystyle S = (1)/(2)\left((\sec \theta \tan\theta)/(2)\Big|_(0)^(\pi /3) + (1)/(2) \int_0^(\pi /3) \sec \theta\, d\theta\right)

This is a common integral:


\displaystyle S = (1)/(2)\left((\sec \theta \tan\theta)/(2)+ (1)/(2) \left(\ln \left(\sec \theta + \tan\theta\right)\right)\Bigg|_(0)^(\pi /3) \right)

Evaluate. Hence:


\displaystyle \begin{aligned} S = (1)/(2)\left[\left((\sec(\pi)/(3)\tan(\pi)/(3))/(2)+(1)/(2)\ln\left(\sec(\pi)/(3)+\tan(\pi)/(3)\right)\right) \\ - \left((\sec0\tan0)/(2)+(1)/(2)\ln\left(\sec 0 +\tan 0\right)\right)\right] \end{aligned}

Evaluate:


\displaystyle \begin{aligned} S &amp;=(1)/(2) \left[ \left(((2)\left(√(3)\right))/(2) + (1)/(2)\ln \left(2 + √(3)\right) \right)-\left(((1)(0))/(2) + (1)/(2)\ln \left(1+0\right) \right) \right] \\ \\&amp;= (1)/(2)\left(√(3) + (1)/(2) \ln \left(2+√(3)\right)\right) \\ \\ &amp;\approx 1.1953 \end{aligned}

Thus, the length of the arc is about 1.1953 units.

User Hasiya
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.