37.9k views
2 votes
If the range of the coordinate transformation f(x, y) = (-2x,-3y +1) is (4, -2), (2,-5),(-6,4), what

is the domain?

User Camillo
by
4.8k points

1 Answer

5 votes

Answer:

The domain is
{(-2,1),(-1,2),(-3,(5)/(3))}

Explanation:

Given that,

The function is


f(x,y)=(-2x,-3y+1)

The coordinates of range are,


range=(4,-2), (2,-5), (-6,4)}

The domain is,


Domain={(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))}

We need to find the value of x₁ and y₁

Using given function


f(x.y)=(-2x,-3y+1)


f(x_(1),y_(1))=(4,-2,)


(-2x_(1),-3y_(1)+1)=(4,-2)

On equating value of x


-2x_(1)=4


x_(1)=-2

On equating value of y


-3y_(1)+1=-2


-3y_(1)=-2-1


y_(1)=(-2-1)/(-3)


y_(1)=1

We need to find the value of x₂ and y₂

Using given function


f(x_(2),y_(2))=(2,-5,)


(-2x_(2),-3y_(2)+1)=(2,-5)

On equating value of x


-2x_(2)=2


x_(2)=-1

On equating value of y


-3y_(2)+1=-5


-3y_(2)=-5-1


y_(2)=(-5-1)/(-3)


y_(2)=2

We need to find the value of x₃ and y₃

Using given function


f(x_(3),y_(3))=(-6,4,)


(-2x_(3),-3y_(3)+1)=(-6,4)

On equating value of x


-2x_(3)=-6


x_(3)=-3

On equating value of y


-3y_(3)+1=-4


-3y_(3)=-4-1


y_(3)=(-4-1)/(-3)


y_(3)=(5)/(3)

We need to find the domain

Using domain


Domain={(-2,1),(-1,2),(-3,(5)/(3))}

Hence, The domain is
{(-2,1),(-1,2),(-3,(5)/(3))}

User Teslasimus
by
4.6k points