108k views
1 vote
Given that ‘z’ is in set of complex number and ‘a’ is any real numbers. Solve the trigonometric equation sin(z) = a for all general solutions.

2 Answers

6 votes

We are given with:


{\quad \qquad \longrightarrow \sin (z)={\sf a}\:,\:z\in \mathbb{C}}

Recall the identity what we have for the sine function of complex numbers


  • {\boxed{\bf{\sin (z)=(e^(\iota z)-e^(-\iota z))/(2\iota)}}}

Put the values to thus obtain:


{:\implies \quad \sf (e^(\iota z)-e^(-\iota z))/(2\iota)=a}


{:\implies \quad \sf e^(\iota z)-e^(-\iota z)=2a\iota}

Multiply both sides by
{\sf e^(\iota z)}


{:\implies \quad \sf e^(\iota z)\cdot e^(\iota z)-e^(-\iota z)\cdot e^(\iota z)=2a\iota e^(\iota z)}


{:\implies \quad \sf (e^(\iota z))^(2)-2a\iota e^(\iota z)-1=0}

Put x =
{\sf e^(\iota z)}:


{:\implies \quad \sf x^(2)-2a\iota x-1=0}

Find the discriminant, here D will be, D = (-2ai)² - 4 × 1 × (-1) = 4 - 4a² = 4(1-a²)

Now, By quadratic formula:


{:\implies \quad \sf x=\frac{-(-2a\iota)\pm \sqrt{4(1-a^(2))}}{2}}


{:\implies \quad \sf x=\frac{a\iota \pm \sqrt{1-a^(2)}}{2}}


{:\implies \quad \sf e^(\iota z)=\frac{a\iota \pm \sqrt{1-a^(2)}}{2}}


{:\implies \quad \sf \iota z=log\bigg(\frac{a\iota \pm \sqrt{1-a^(2)}}{2}\bigg)}

Using the formula for logarithms, we have:


{:\implies \quad \sf \iota z=log(a\iota \pm \sqrt{1-a^(2)})-log(2)}


{:\implies \quad \sf z=(1)/(\iota)log(a\iota \pm \sqrt{1-a^(2)})-(1)/(\iota)log(2)}

The sine function is periodic on 2πn and zero on (π/2), and the logarithmic expression becomes undefined for all ia±√(1-a²) < 0, so we will take modulus of it


{:\implies \quad \boxed{\bf{z=(1)/(\iota)log\bigg|a\iota \pm \sqrt{1-a^(2)}\bigg|-(1)/(\iota)log(2)+(\pi)/(2)+2\pi n\:\:\forall \:n\in \mathbb{Z}}}}

User Harold L
by
8.5k points
2 votes

Recall that for all
z\in\Bbb C,


\sin(z) = (e^(iz) - e^(-iz))/(2i)

so that


\sin(z) = a \iff e^(iz) - e^(-iz) = 2ia

Multiply both sides by
e^(iz) to get a quadratic equation,


e^(2iz) - 2iae^(iz) - 1 = 0

Solve for
e^(iz). By completing the square,


e^(2iz) - 2ia e^(iz) + i^2a^2 = 1 + i^2a^2


\left(e^(iz) - ia\right)^2 = 1 - a^2


e^(iz) - ia = \pm √(1-a^2)


e^(iz) = ia \pm √(1-a^2)


iz = \log\left(ia \pm √(1-a^2)\right)


iz = \ln\left|ia \pm √(1-a^2)\right| + i \left(\arg\left(ia \pm √(1-a^2)\right) + 2\pi n\right)


\boxedia \pm √(1-a^2)\right

where n is any integer.

User Jeeby
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories