207k views
2 votes
What is the expression in radical form?

(4x3y2)310

1 Answer

3 votes

Given:

Consider the given expression is


(4x^3y^2)^{(3)/(10)}

To find:

The radical form of given expression.

Solution:

We have,


(4x^3y^2)^{(3)/(10)}=(2^2)^{(3)/(10)}(x^3)^{(3)/(10)}(y^2)^{(3)/(10)}


(4x^3y^2)^{(3)/(10)}=(2)^{(6)/(10)}(x)^{(9)/(10)}(y)^{(6)/(10)}


(4x^3y^2)^{(3)/(10)}=(2)^{(3)/(5)}(x)^{(9)/(10)}(y)^{(3)/(5)}


(4x^3y^2)^{(3)/(10)}=\sqrt[5]{2^3}\sqrt[10]{x^9}\sqrt[5]{y^3}
[\because x^{(1)/(n)}=\sqrt[n]{x}]


(4x^3y^2)^{(3)/(10)}=\sqrt[5]{8y^3}\sqrt[10]{x^9}
[\because x^{(1)/(n)}=\sqrt[n]{x}]

Therefore, the required radical form is
\sqrt[5]{8y^3}\sqrt[10]{x^9}.

User Boaz Yaniv
by
6.2k points