74.5k views
5 votes
How do you do these questions?

How do you do these questions?-example-1
User KKlouzal
by
7.6k points

1 Answer

3 votes

Explanation:

The width of each interval is Δx = (4−1)/6 = 1/2.

a) Evaluate the function at the beginning and end of each interval.

f(x) = 7√(ln x)

f(1) = 7√(ln 1) = 0

f(1.5) = 7√(ln 1.5) ≈ 4.4573300

f(2) = 7√(ln 2) ≈ 5.8278823

f(2.5) = 7√(ln 2.5) ≈ 6.7006153

f(3) = 7√(ln 3) ≈ 7.3370295

f(3.5) = 7√(ln 3.5) ≈ 7.8348826

f(4) = 7√(ln 4) ≈ 8.2418702

Calculate the area of each trapezoid.

T₁ = ½ (0 + 4.4573300) (1/2) = 1.1143325

T₂ = ½ (4.4573300 + 5.8278823) (1/2) = 2.5713031

T₃ = ½ (5.8278823 + 6.7006153) (1/2) = 3.1321244

T₄ = ½ (6.7006153 + 7.3370295) (1/2) = 3.5094112

T₅ = ½ (7.3370295 + 7.8348826) (1/2) = 3.7929780

T₆ = ½ (7.8348826 + 8.2418702) (1/2) = 4.0191882

The total area is therefore:

T = 1.1143325 + 2.5713031 + 3.1321244 + 3.5094112 + 3.7929780 + 4.0191882

T = 18.139337

b) Evaluate the function at the midpoint of each interval.

f(1.25) = 7√(ln 1.25) ≈ 3.3066651

f(1.75) = 7√(ln 1.75) ≈ 5.2365230

f(2.25) = 7√(ln 2.25) ≈ 6.3036165

f(2.75) = 7√(ln 2.75) ≈ 7.0404861

f(3.25) = 7√(ln 3.25) ≈ 7.5996115

f(3.75) = 7√(ln 3.75) ≈ 8.0477348

Calculate the area of each rectangle.

M₁ = (3.3066651) (1/2) = 1.6533325

M₂ = (5.2365230) (1/2) = 2.6182615

M₃ = (6.3036165) (1/2) = 3.1518082

M₄ = (7.0404861) (1/2) = 3.5202431

M₅ = (7.5996115) (1/2) = 3.7998057

M₆ = (8.0477348) (1/2) = 4.0238674

The total area is therefore:

M = 1.6533325 + 2.6182615 + 3.1518082 + 3.5202431 + 3.7998057 + 4.0238674

M = 18.767318

c) Simpson's rule can be calculated as:

S₆ = Δx/3 [f(x₀) + 4f(x₁) + 2f(x₂) + 4f(x₃) + 2f(x₄) + 4f(x₅) + f(x₆)]

S₆ = (1/2)/3 [0 + 4(4.4573300) + 2(5.8278823) + 4(6.7006153) + 2(7.3370295) + 4(7.8348826) + 8.2418702]

S₆ = 18.423834

User Biruel Rick
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories