40.9k views
1 vote
-5-3x ≥ 2(10+2x)+3
Can you solve this as an inequality?

2 Answers

5 votes

Answer:

x ≤ -4

Explanation:


-5-3x \geq 2(10+2x)+3\\

Expand


2\left(10+2x\right)+3:\quad 4x+23\\\\-5-3x\ge \:4x+23\\\\\mathrm{Add\:}5\mathrm{\:to\:both\:sides}\\-5-3x+5\ge \:4x+23+5\\\\Simplify\\-3x\ge \:4x+28\\\\\mathrm{Subtract\:}4x\mathrm{\:from\:both\:sides}\\-3x-4x\ge \:4x+28-4x\\\\Simplify\\-7x\ge \:28\\\\\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}\\\left(-7x\right)\left(-1\right)\le \:28\left(-1\right)\\\\Simplify\\7x\le \:-28\\\\\mathrm{Divide\:both\:sides\:by\:}7\\(7x)/(7)\le (-28)/(7)


Simplify\\x\le \:-4

User Ionpoint
by
5.2k points
2 votes

Answer: x ≤ -4

Step-by-step explanation: The explination will be placed in the comment area :)

User Pd Shah
by
4.4k points