123,772 views
24 votes
24 votes
19-42 evaluate the integral.
23.
\int_(0)^(2)(2 x-3)\left(4 x^(2)+1\right) d x

User BoJack Horseman
by
2.8k points

1 Answer

12 votes
12 votes

Expand the integrand:


(2x - 3) (4x^2 + 1) = 8x^3 - 12x^2 + 2x - 3

Then integrate using the power rule:


\displaystyle \int (8x^3-12x^2+2x-3) \, dx = 2x^4 - 4x^3 + x^2 - 3x + C

By the fundamental theorem of calculus, the definite integral has a value of


\displaystyle \int_0^2 (2x-3)(4x^2+1) \, dx = \left(2x^4 - 4x^3 + x^2 - 3x\right)\bigg|_(x=2) - \left(2x^4 - 4x^3 + x^2 - 3x\right)\bigg|_(x=0)


\displaystyle \int_0^2 (2x-3)(4x^2+1) \, dx = 32 - 32 + 4 - 6 = \boxed{-2}

User Rayann Nayran
by
2.5k points