33.7k views
8 votes
Multiply and simplify: (1 + 5i)(3 - 8i)

User Will Chu
by
3.6k points

2 Answers

7 votes

Answer:

43 + 7i

Explanation:

Given: (1 + 5i)(3 - 8i)

To find: Multiplication and simplification

Solution:

i=
√(-1),

Now, we simply open the brackets as follows:

(1 + 5i)(3 - 8i)

1(3 - 8i) + 5i (3 - 8i)

3 - 8i + 15i - 40
i^(2)

3 + 7i - 40
i^(2) - (i)


i^(2) = i * i


i^(2) =
√(-1) *
√(-1)


i^(2) = -1

Now, put
i^(2) = -1 into the equation (i)

we get

⇒ 3 + 7i -40(-1)

⇒ 3 + 7i + 40

⇒ 43 + 7i

∴ Final Answer : 43 + 7i

User Obchardon
by
3.3k points
8 votes


\qquad\qquad\huge\underline{{\sf Answer}}

Here we go ~

what we need to know here is that :


\qquad \sf  \dashrightarrow \:i \cdot i = - 1

Now, let's proceed accordingly ~


\qquad \sf  \dashrightarrow \:(1 + 5i) \cdot(3 - 8i)


\qquad \sf  \dashrightarrow \:(1 \cdot3) - (1 \sdot8i) + (5i \cdot3) - (5i \cdot8i)


\qquad \sf  \dashrightarrow \:3 - 8i + 15i - ( - 1)(40)


\qquad \sf  \dashrightarrow \:3 + 7i - ( - 40)


\qquad \sf  \dashrightarrow \:3 + 40 + 7i


\qquad \sf  \dashrightarrow \:43 + 7i

User Murtuza Z
by
3.3k points