221k views
4 votes
14. M is the midpoint of AB. Find the length of AB.

4x + 13
3x + 17
A
M
B

14. M is the midpoint of AB. Find the length of AB. 4x + 13 3x + 17 A M B-example-1

2 Answers

7 votes

Answer:

30 7x

Explanation:

17+13=30

3+4=7x

30 7x or

210x

User Ankur Mishra
by
4.6k points
6 votes

The value of x in the expressions for the length measure is 4 and line segment AB has a length of 58 units.

The figure in the image is a line with a point M at the midpoint.

Since M is the midpoint of segment AB, segment AM equals segment MB.

From the figure:

Segment AM = 4x + 13

Segment MB = 3x + 17

To determine the length of segment AB, first, we find the value of x:

Since segment AM equals segment MB:

4x + 13 = 3x + 17

4x - 3x = 17 - 13

x = 4

Now, we find the length of segment AB:

Segment AB = Segment AM + Segment MB

Segment AB = 4x + 13 + 3x + 17

Segment AB = 7x + 30

Plug in x = 4:

Segment AB = 7( 4 ) + 30

Segment AB = 28 + 30

Segment AB = 58

Therefore, segment AB measures 58 units.

User Mariobros
by
4.8k points