29.0k views
4 votes
Find the LCM of each numbers 3,8,12,15

1 Answer

5 votes

Answer:

120

Explanation:

Method 1 ; Using prime factors ;


3,\:8,\:12,\:15\\\\\mathrm{Prime\:factorization\:of\:}3:\quad 3\\\mathrm{Prime\:factorization\:of\:}8:\quad 2*\:2*\:2\\\mathrm{Prime\:factorization\:of\:}12:\quad 2*\:2*\:3\\\mathrm{Prime\:factorization\:of\:}15:\quad 3*\:5\\\\=3* \:2* \:2* \:2* \:5\\=120

Method 2 ; Using Multipliers


\mathrm{The\:multipliers\:of\:}3\\3,\:6,\:9,\:12,\:15,\:18,\:21,\:24,\:27,\:\\30,\:33,\:36,\:39,\:42,\:45,\:48,\:51,\:\\54,\:57,\:60,\:63,\:66,\:69,\:72,\:75,\:\\78,\:81,\:84,\:87,\:90,\:93,\:96,\:99,\:102,\:105,\:108,\:111\\114,\:117,\:120,\:123,\:126,\:129\\


\mathrm{The\:multipliers\:of\:}8\\\\=8,\:16,\:24,\:32,\:40,\:48,\:56,\:64,\:72,\\\:80,\:88,\:96,\:104,\:112,\:120,\:128,\:136,\:\\144,\:152,\:160,\:168,\:176,\:184


\mathrm{The\:multipliers\:of\:}12\\\\=12,\:24,\:36,\:48,\:60,\:72,\:84,\:96,\:108,\\\:120,\:132,\:144,\:156,\:168,\:180,\:192,\:204,\\\:216,\:228,\:240,\:252,\:264,\:276,\:288,\:\\\\\\\mathrm{The\:multipliers\:of\:}15\\=15,\:30,\:45,\:60,\:75,\:90,\:105,\:120,\\\:135,\:150,\:165,\:180,\:195,\:210,\:225,\\\:240,\:255,\:270,\:285,\:300,\:315,\:330,\:


\mathrm{The\:smallest\:common\:number\:is}\\=120

User JanDotNet
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories