Answer:
![y=2x+11](https://img.qammunity.org/2021/formulas/mathematics/college/xzjl1c0el9g3prblw23vj1o93629fj6b75.png)
Explanation:
So we know that the slope is 2 and the lines passes through the point (-5,1).
We can use the point-slope form. The point-slope form is:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ks7lzc9jj3emt3ptrdvrvr0uzhz4c0qyo5.png)
Where m is the slope and (x₁, y₁) is a point.
So, let's substitute 2 for m and (-5,1) for (x₁, y₁), respectively. Therefore:
![y-(1)=2(x-(-5))](https://img.qammunity.org/2021/formulas/mathematics/college/mu9kr3m2gz8mdf3f8k1izt02ws8asc9e8w.png)
Simplify:
![y-1=2(x+5)](https://img.qammunity.org/2021/formulas/mathematics/college/jnwuaxtwsc1as7ifnogexm9jb7le4xvq1z.png)
Distribute the 2:
![y-1=2x+10](https://img.qammunity.org/2021/formulas/mathematics/college/mlj4sv2xe84nac2yw0hxv2l6pfwj6obh81.png)
Add 1 to both sides:
![y=2x+11](https://img.qammunity.org/2021/formulas/mathematics/college/xzjl1c0el9g3prblw23vj1o93629fj6b75.png)
So, the equation of our line is:
![y=2x+11](https://img.qammunity.org/2021/formulas/mathematics/college/xzjl1c0el9g3prblw23vj1o93629fj6b75.png)