Answer:
true
Explanation:
Examples :
180 = 5 × 2² × 3²
Then
The number 180 has perfect square factors which are 2 and 3
Then
The number √180 can be simplified because:
![√(180) =\sqrt{5* 2^(2)* 3^(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/m10w4o0964o8pchimiedbe2t4upeh6i61a.png)
![=\sqrt{5* \left( 2* 3\right)^(2) }](https://img.qammunity.org/2023/formulas/mathematics/college/x8368xe2demqld8da39qztvm621l1vruv9.png)
![=\sqrt{5* \left( 6\right)^(2) }](https://img.qammunity.org/2023/formulas/mathematics/college/7po9lgvplarfcgplw75fov5n9b5xsesyoe.png)
![=√(5) * \sqrt{6^(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/4k0im3rp2swvj9aiwrkxubunlwdx8kraga.png)
![=6√(5)](https://img.qammunity.org/2023/formulas/mathematics/college/m086vadzx2ckfo6wf1pt2e1r1t8fqlzsol.png)
On the other hand :
10 = 5 × 2
Then
The number 10 has no perfect square factors
Then
The number √10 cannot be simplified because:
![√(10) =√(5* 2) =√(5) * √(2)](https://img.qammunity.org/2023/formulas/mathematics/college/ab4yj2uq00bl6xv69kh1w2fqj5vke067pm.png)
![\text{and} \ √(5) * √(2) \ \text{is not a simplified expression of} \ √(10) \ \\\text{,in fact it is more complicated than} \ √(10)](https://img.qammunity.org/2023/formulas/mathematics/college/57afa15a1citb84rhhpmnnlffjqzmihu0y.png)