The stone's acceleration, velocity, and position vectors at time
are
![\mathbf a(t)=-g\,\mathbf j](https://img.qammunity.org/2021/formulas/physics/college/6n5r0ej2lnigiy3rj0avtvbw40833iqr7x.png)
![\mathbf v(t)=v_(i,x)\,\mathbf i+\left(v_(i,y)-gt\right)\,\mathbf j](https://img.qammunity.org/2021/formulas/physics/college/nzhecva2ce8frc4iamn1yd7wmv3vcavmvs.png)
![\mathbf r(t)=v_(i,x)t\,\mathbf i+\left(y_i+v_(i,y)t-\frac g2t^2\right)\,\mathbf j](https://img.qammunity.org/2021/formulas/physics/college/4von7aofmdgxlba75sp58zhprij8qqzb42.png)
where
![g=9.80(\rm m)/(\mathrm s^2)](https://img.qammunity.org/2021/formulas/physics/college/7ekqrf1mo24uerpzvlvvicniaav3ecrqdi.png)
![v_(i,x)=\left(28.0(\rm m)/(\rm s)\right)\cos43.0^\circ\approx20.478(\rm m)/(\rm s)](https://img.qammunity.org/2021/formulas/physics/college/z4elj4d6f3s09ypq457t7419a0md3enwcd.png)
![v_(i,y)=\left(28.0(\rm m)/(\rm s)\right)\sin43.0^\circ\approx19.096(\rm m)/(\rm s)](https://img.qammunity.org/2021/formulas/physics/college/4bgstr6qs07o0w3ojctkeqprcldy0xny36.png)
and
is the height of the building and initial height of the rock.
(a) After 6.1 s, the stone has a height of 5 m. Set the vertical component
of the position vector to 5 m and solve for
:
![5\,\mathrm m=y_i+\left(19.096(\rm m)/(\rm s)\right)(6.1\,\mathrm s)-\frac12\left(9.80(\rm m)/(\mathrm s^2)\right)(6.1\,\mathrm s)^2](https://img.qammunity.org/2021/formulas/physics/college/2c1zzxedqhn8uu0wajidj1yma8gdxuvzdp.png)
![\implies\boxed{y_i\approx70.8\,\mathrm m}](https://img.qammunity.org/2021/formulas/physics/college/4svjs42oltsf5scmdjl6xdva6ffv6kc1x5.png)
(b) Evaluate the horizontal component
of the position vector when
:
![\left(20.478(\rm m)/(\rm s)\right)(6.1\,\mathrm s)\approx\boxed{124.92\,\mathrm m}](https://img.qammunity.org/2021/formulas/physics/college/wiykuthenq0dscmwp0bxzxudeqy8c4wihy.png)
(c) The rock's velocity vector has a constant horizontal component, so that
![v_(f,x)=v_(i,x)\approx20.478(\rm m)/(\rm s)](https://img.qammunity.org/2021/formulas/physics/college/bs696jqp8unk7ri2dfu3cboay86abcaxqg.png)
where
![v_(f,x)](https://img.qammunity.org/2021/formulas/physics/college/gsyakdphxjtssdj7z55ofea1bklayqua70.png)
For the vertical component, recall the formula,
![{v_(f,y)}^2-{v_(i,y)}^2=2a\Delta y](https://img.qammunity.org/2021/formulas/physics/college/f7dfwr9k68z4ii85vn5f26p6ayyk4c2hun.png)
where
and
are the initial and final velocities,
is the acceleration, and
is the change in height.
When the rock hits the ground, it will have height
. It's thrown from a height of
, so
. The rock is effectively in freefall, so
. Solve for
:
![{v_(f,y)}^2-\left(19.096(\rm m)/(\rm s)\right)^2=2(-g)(-124.92\,\mathrm m)](https://img.qammunity.org/2021/formulas/physics/college/weezlj7fvziqgoi2104ajsxzm48t9hum8e.png)
![\implies v_(f,y)\approx-53.039(\rm m)/(\rm s)](https://img.qammunity.org/2021/formulas/physics/college/nbuxww5eldhlcc0d6r461syf7xkuryor55.png)
(where we took the negative square root because we know that
points in the downward direction)
So at the moment the rock hits the ground, its velocity vector is
![\mathbf v_f=\left(20.478(\rm m)/(\rm s)\right)\,\mathbf i+\left(-53.039(\rm m)/(\rm s)\right)\,\mathbf j](https://img.qammunity.org/2021/formulas/physics/college/v180paqy7wis570dmerx1yp3k8ve773eel.png)
which has a magnitude of
![\|\mathbf v_f\|=\sqrt{\left(20.478(\rm m)/(\rm s)\right)^2+\left(-53.039(\rm m)/(\rm s)\right)^2}\approx\boxed{56.855(\rm m)/(\rm s)}](https://img.qammunity.org/2021/formulas/physics/college/bzuv0kl2os9sv6it3wwm2ek8tee28e5s4j.png)
(d) The acceleration vector stays constant throughout, so
![\mathbf a(t)=\boxed{-g\,\mathbf j}](https://img.qammunity.org/2021/formulas/physics/college/rc6wv8jed718r29ret7jjcccxmmms260hq.png)