11.2k views
3 votes
Please help me to solve the question!​

Please help me to solve the question!​-example-1
User Yanunon
by
5.7k points

1 Answer

6 votes

Answer: (x - 2)² + (y - 3)² = 25

Explanation:

The equation of a circle is: (x - h)² + (y - k)² = r² where

  • (h, k) is the center of the circle
  • "r" is the radius of the circle

We are given three coordinates. Input those as (x, y) into the circle equation. This creates a system of equations with 3 equations and 3 unknowns (h, k, r).

EQ1: (5 - h)² + (7 - k)² = r²

EQ2: (-1 - h)² + (7 - k)² = r²

EQ3: (5 - h)² + (-1 - k)² = r²

Evaluate EQ1 & EQ2:

(5 - h)² + (7 - k)² = r²

-[ (-1 - h)² + (7 - k)² = ]

(5 - h)² - (-1 - h)² = 0

(5 - h)² = (-1 - h)²


√((5 - h)^2) = √((-1 - h)^2)

5 - h = ±(-1 - h)

5 - h = -1 - h 5 - h = -(-1 - h)

6 ≠ 0 5 - h = 1 + h

Disregard 4 = 2h

2 = h

Input h = 2 into EQ2 & EQ3 and evaluate:

(-1 - 2)² + (7 - k)² = r² --> 9 + (7 - k)² = r²

(5 - 2)² + (-1 - k)² = r² --> - [ 9 + (-1 - k)² = ]

(7 - k)² - (-1 - k)² = 0

(7 - k)² = (-1 - k)²


√((7 - k)^2) = √((-1 - k)^2)

7 - k = ±(-1 - k)

7 - k = -1 - k 7 - k = -(-1 - k)

8 ≠ 0 7 - k = 1 + k

Disregard 6 = 2k

3 = k

Input h = 2 and k = 3 into any of the equations to solve for r²:

EQ1: (5 - 2)² + (7 - 3)² = r²

9 + 16 = r²

25 = r²

Input h = 2, k = 3, and r² = 25 into the equation of a circle:

(x - h)² + (y - k)² = r²

(x - 2)² + (y - 3)² = 25

User Robert Fricke
by
6.0k points