![\qquad\qquad\huge\underline{{\sf Answer}}](https://img.qammunity.org/2023/formulas/mathematics/college/c2sxngg8eo14b80i5ilhws8elkvsue4xqb.png)
Let's simplify ~
![\qquad \sf \dashrightarrow \: \sqrt{ {x}^(2) - 10x + 25 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/1na0ob01axgdhnt1ex7bhhri3gxv6c3vcm.png)
![\qquad \sf \dashrightarrow \: \sqrt{ {x}^(2) - 5x - 5x + 25 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/vz0ce17t8rvpvqnelvz5lnm3o7vxrzydsm.png)
![\qquad \sf \dashrightarrow \: \sqrt{ {x}^{} (x- 5) - 5(x - 5) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/q197dqin9pqfveel0aonp8rsgf0yq5kkch.png)
![\qquad \sf \dashrightarrow \: √( (x- 5) (x - 5) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/n3pq8yrc5brame9ka1ps0ykseqot6r80vg.png)
![\qquad \sf \dashrightarrow \: \sqrt{ (x- 5) {}^(2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/n53qz0gk54rrr1zeo1027sr2z36qcebidd.png)
![\qquad \sf \dashrightarrow \: (x- 5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/z4vyy1xjvsk5mwb6ueo9niv8jlpcppk8t9.png)
value x lies between :
![\qquad \sf \dashrightarrow \: - 5 \leqslant x \leqslant 5](https://img.qammunity.org/2023/formulas/mathematics/high-school/o1kgb2i38tawzs7jtv8huay2322upjgf8u.png)
if the value of x is taken -5
![\qquad \sf \dashrightarrow \: - 5 - 5](https://img.qammunity.org/2023/formulas/mathematics/high-school/2hjsqv0id5mpc1sfa0f2fb7uk3ter1jxxg.png)
![\qquad \sf \dashrightarrow \: - 10](https://img.qammunity.org/2023/formulas/mathematics/high-school/yk5132imwsjg5jjwdxjakltuk7ne6mfm6y.png)
if value of x is taken as 5
![\qquad \sf \dashrightarrow \:5 - 5](https://img.qammunity.org/2023/formulas/mathematics/high-school/suyplr10xkrtdah3gdrkjyac34y0m2q8db.png)
![\qquad \sf \dashrightarrow \:0](https://img.qammunity.org/2023/formulas/mathematics/high-school/c5tbvcc3zj1m2yxix5ky62r94zimptfplf.png)
So, the possible values of the required expression lies between ~
![\qquad \sf \dashrightarrow \: - 10 \leqslant \sqrt{ {x}^(2) - 10x + 25 } < 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/i61yy4sz71g8lewkzz7x0vog32mr9z8jhs.png)
I hope you understood the whole procedure. let me know if you have any doubts in given steps ~