93.4k views
25 votes
Simplify √(x^2-10x+25) if -5≤x<5

1 Answer

6 votes


\qquad\qquad\huge\underline{{\sf Answer}}

Let's simplify ~


\qquad \sf&nbsp; \dashrightarrow \: \sqrt{ {x}^(2) - 10x + 25 }


\qquad \sf&nbsp; \dashrightarrow \: \sqrt{ {x}^(2) - 5x - 5x + 25 }


\qquad \sf&nbsp; \dashrightarrow \: \sqrt{ {x}^{} (x- 5) - 5(x - 5) }


\qquad \sf&nbsp; \dashrightarrow \: √( (x- 5) (x - 5) )


\qquad \sf&nbsp; \dashrightarrow \: \sqrt{ (x- 5) {}^(2) }


\qquad \sf&nbsp; \dashrightarrow \: (x- 5)

value x lies between :


\qquad \sf&nbsp; \dashrightarrow \: - 5 \leqslant x \leqslant 5

if the value of x is taken -5


\qquad \sf&nbsp; \dashrightarrow \: - 5 - 5


\qquad \sf&nbsp; \dashrightarrow \: - 10

if value of x is taken as 5


\qquad \sf&nbsp; \dashrightarrow \:5 - 5


\qquad \sf&nbsp; \dashrightarrow \:0

So, the possible values of the required expression lies between ~


\qquad \sf&nbsp; \dashrightarrow \: - 10 \leqslant \sqrt{ {x}^(2) - 10x + 25 } < 0

I hope you understood the whole procedure. let me know if you have any doubts in given steps ~

User Lee Woodman
by
5.8k points