21,200 views
6 votes
6 votes
Simplify √(x^2-10x+25) if -5≤x<5

User Xavdid
by
2.6k points

2 Answers

9 votes
9 votes


\\ \rm\Rrightarrow √(x²-10x+25)


\\ \rm\Rrightarrow √(x²-5x-5x+25)


\\ \rm\Rrightarrow √(x(x-5)-5(x-5))


\\ \rm\Rrightarrow √((x-5)(x-5))


\\ \rm\Rrightarrow √((x-5)^2)


\\ \rm\Rrightarrow\pm (x-5)

Solution set(for x-5)

  • {-10,-9,-8,-7,-4,-3,-2,-1,0}

for 5-x

  • {0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10}
User Timo Stark
by
2.6k points
9 votes
9 votes

Answer:

First, simplify the expression under the square root sign by factoring:


\implies x^2-10x+25


\implies x^2-5x-5x+25


\implies x(x-5)-5(x-5)


\implies (x-5)(x-5)


\implies (x-5)^2

Therefore:


\implies √(x^2-10x+25)=√((x-5)^2)


\implies √(x^2-10x+25)=\pm(x-5)


\implies √(x^2-10x+25)=|x-5|

As the domain is -5 ≤ x < 5, then:


\implies y=-x+5

and the range is 0 < y ≤ 10

User Skoz
by
3.3k points