20.0k views
1 vote
Part 2. Describe the Transformations and write the equation for the graph​

Part 2. Describe the Transformations and write the equation for the graph​-example-1
User Mburesh
by
8.3k points

1 Answer

2 votes

Answer: shifted left 6 units, down 4 units, and reflected over the x-axis

Explanation:

The vertex form of a quadratic equation is: y = a(x - h)² + k where

  • "a" is the vertical stretch
  • -a is a reflection over the x-axis (+a = U-shape), -a = ∩-shape)
  • (h, k) is the vertex
  • h is the horizontal shift (positive = right, negative = left)
  • k is the vertical shift (positive = up, negative = down)

Given: Vertex (h, k) = (-6, -4)

Parabola is ∩-shaped so "a" is negative

Next points from vertex are 1 down 1 right and 1 down 1 left --> a = -1

Input a = -1, h = -6, k = -4 into the Vertex form:

y = -(x + 6)² - 4

a = -1: reflected over the x-axis

h = -6: shifted left 6 units

k = -4: shifted down 4 units

User Eshirima
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories